验证码: 看不清楚,换一张 查询 注册会员,免验证
  • {{ basic.site_slogan }}
  • 打开微信扫一扫,
    您还可以在这里找到我们哟

    关注我们

Python中快的循环方式有哪些

阅读:950 来源:乙速云 作者:代码code

Python中快的循环方式有哪些

各种姿势

比如说有一个简单的任务,就是从 1 累加到 1 亿,我们至少可以有 7 种方法来实现,列举如下:

1、while 循环
def while_loop(n=100_000_000):
i = 0
s = 0
while i < n:
s += i
i += 1
return s
2、for 循环
def for_loop(n=100_000_000):
s = 0
for i in range(n):
s += i
return s
3、sum range
def sum_range(n=100_000_000):
return sum(range(n))
4、sum generator(生成器)
def sum_generator(n=100_000_000):
return sum(i for i in range(n))
5、sum list comprehension(列表推导式)
def sum_list_comp(n=100_000_000):
return sum([i for i in range(n)])
6、sum numpy
import numpy
def sum_numpy(n=100_000_000):
return numpy.sum(numpy.arange(n, dtype=numpy.int64))
7、sum numpy python range
import numpy
def sum_numpy_python_range(n=100_000_000):
return numpy.sum(range(n))

上述 7 种方法得到的结果是一样的,但是消耗的时间却各不相同,你可以猜测一下哪一个方法最快,然后看下面代码的执行结果:

import timeit

def main():
l_align = 25
print(f'{"1、while 循环":<{l_align}} {timeit.timeit(while_loop, number=1):.6f}')
print(f"{'2、for 循环':<{l_align}}{timeit.timeit(for_loop, number=1):.6f}")
print(f'{"3、sum range":<{l_align}} {timeit.timeit(sum_range, number=1):.6f}')
print(f'{"4、sum generator":<{l_align}} {timeit.timeit(sum_generator, number=1):.6f}')
print(f'{"5、sum list comprehension":<{l_align}} {timeit.timeit(sum_list_comp, number=1):.6f}')
print(f'{"6、sum numpy":<{l_align}} {timeit.timeit(sum_numpy, number=1):.6f}')
print(f'{"7、sum numpy python range":<{l_align}} {timeit.timeit(sum_numpy_python_range, number=1):.6f}')

if __name__ == '__main__':
main()

执行结果如下所示:

Python中快的循环方式有哪些

比较快的方式

for 比 while 块

for 和 while 本质上在做相同的事情,但是 while 是纯 Python 代码,而 for 是调用了 C 扩展来对变量进行递增和边界检查,我们知道 CPython 解释器就是 C 语言编写的,Python 代码要比 C 代码慢,而 for 循环代表 C,while 循环代表 Python,因此 for 比 while 快。

numpy 内置的 sum 要比 Python 的 sum 快

numpy 主要是用 C 编写的,相同的功能,肯定是 numpy 的快,类似的,numpy 的 arange 肯定比 Python 的 range 快。

交叉使用会更慢

numpy 的 sum 与 Python 的 range 结合使用,结果耗时最长,见方法 7。最好是都使用 numpy 包来完成任务,像方法 6。

生成器比列表推导式更快

生成器是惰性的,不会一下子生成 1 亿个数字,而列表推导式会一下子申请全部的数字,内存占有较高不说,还不能有效地利用缓存,因此性能稍差。

分享到:
*特别声明:以上内容来自于网络收集,著作权属原作者所有,如有侵权,请联系我们: hlamps#outlook.com (#换成@)。
相关文章
{{ v.title }}
{{ v.description||(cleanHtml(v.content)).substr(0,100)+'···' }}
你可能感兴趣
推荐阅读 更多>