验证码: 看不清楚,换一张 查询 注册会员,免验证
  • {{ basic.site_slogan }}
  • 打开微信扫一扫,
    您还可以在这里找到我们哟

    关注我们

C++怎么把二叉搜索树转换累加树

阅读:922 来源:乙速云 作者:代码code

C++怎么把二叉搜索树转换累加树

把二叉搜索树转换为累加树

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。

  • 节点的右子树仅包含键 大于 节点键的节点。

  • 左右子树也必须是二叉搜索树。

示例 1:

C++怎么把二叉搜索树转换累加树

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]
输出:[1,null,1]

示例 3:

输入:root = [1,0,2]
输出:[3,3,2]

示例 4:

输入:root = [3,2,4,1]
输出:[7,9,4,10]

提示:

C++怎么把二叉搜索树转换累加树

方法一:DFS反向中序遍历

二叉搜索树有一个非常不错的性质,就是“中序遍历所经过的节点的值是非递减的”。

同理,如果我们“反向中序遍历(右子->根->左子)”一颗二叉搜索树,那么我们的遍历顺序就是“非递增”的。

我们只需要记录一下“历史遍历节点的总和”,然后按照反向中序遍历的方式去遍历这棵二叉树,遍历到某个节点时,将这个节点的值修改为“这个节点的初始值 和 历史节点总和 的 和”,同时更新“历史遍历节点的总和”即可。

  • 时间复杂度O(n),其中nnn是二叉树节点的个数

  • 空间复杂度O(n)

AC代码

C++

class Solution {
private:
    int total;

    void dfs(TreeNode* root) {
        if (!root)
            return;
        dfs(root->right);
        total = root->val = total + root->val;
        dfs(root->left);
    }
public:
    Solution() {total = 0;}

    TreeNode* convertBST(TreeNode* root) {
        dfs(root);
        return root;
    }
};
分享到:
*特别声明:以上内容来自于网络收集,著作权属原作者所有,如有侵权,请联系我们: hlamps#outlook.com (#换成@)。
相关文章
{{ v.title }}
{{ v.description||(cleanHtml(v.content)).substr(0,100)+'···' }}
你可能感兴趣
推荐阅读 更多>