验证码: 看不清楚,换一张 查询 注册会员,免验证
  • {{ basic.site_slogan }}
  • 打开微信扫一扫,
    您还可以在这里找到我们哟

    关注我们

如何在DeepLearning4j中使用循环神经网络进行时间序列预测

阅读:384 来源:乙速云 作者:代码code

如何在DeepLearning4j中使用循环神经网络进行时间序列预测

在DeepLearning4j中,使用循环神经网络(RNN)进行时间序列预测的步骤如下:

  1. 导入必要的库和类:
import org.datavec.api.records.reader.impl.csv.CSVSequenceRecordReader;
import org.datavec.api.split.NumberedFileInputSplit;
import org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator;
import org.deeplearning4j.nn.conf.BackpropType;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.conf.GradientNormalization;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.GravesLSTM;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.util.ModelSerializer;
  1. 准备数据集:
int miniBatchSize = 32;
int numPossibleLabels = 10; // 标签数量
int numExamples = 100; // 样本数量
int numFeatures = 3; // 特征数量

CSVSequenceRecordReader trainFeatures = new CSVSequenceRecordReader(0, ",");
trainFeatures.initialize(new NumberedFileInputSplit("path/to/train_features_%d.csv", 0, numExamples - 1));

SequenceRecordReaderDataSetIterator trainData = new SequenceRecordReaderDataSetIterator(trainFeatures, null, miniBatchSize, numPossibleLabels, false);

CSVSequenceRecordReader testFeatures = new CSVSequenceRecordReader(0, ",");
testFeatures.initialize(new NumberedFileInputSplit("path/to/test_features_%d.csv", numExamples, numExamples + numExamples - 1));

SequenceRecordReaderDataSetIterator testData = new SequenceRecordReaderDataSetIterator(testFeatures, null, miniBatchSize, numPossibleLabels, false);
  1. 构建RNN模型:
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
    .seed(123)
    .updater(new RmsProp(0.001))
    .weightInit(WeightInit.XAVIER)
    .gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
    .gradientNormalizationThreshold(10)
    .backpropType(BackpropType.TruncatedBPTT)
    .tBPTTForwardLength(50)
    .tBPTTBackwardLength(50)
    .list()
    .layer(0, new GravesLSTM.Builder().nIn(numFeatures).nOut(200).activation(Activation.TANH).build())
    .layer(1, new GravesLSTM.Builder().nIn(200).nOut(200).activation(Activation.TANH).build())
    .layer(2, new OutputLayer.Builder().nIn(200).nOut(numPossibleLabels).activation(Activation.SOFTMAX).lossFunction(LossFunctions.LossFunction.MCXENT).build())
    .pretrain(false)
    .backprop(true)
    .build();

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(20));
  1. 训练模型:
int numEpochs = 50;
for (int i = 0; i < numEpochs; i++) {
    model.fit(trainData);
}
  1. 在测试集上评估模型:
Evaluation evaluation = new Evaluation(numPossibleLabels);
while (testData.hasNext()) {
    DataSet test = testData.next();
    INDArray output = model.output(test.getFeatures(), false);
    evaluation.evalTimeSeries(test.getLabels(), output);
}
System.out.println(evaluation.stats());
  1. 最后保存模型:
File locationToSave = new File("path/to/save/model.zip");
ModelSerializer.writeModel(model, locationToSave, true);

这样就完成了在DeepLearning4j中使用循环神经网络进行时间序列预测的过程。您可以根据自己的数据集和需求进行相应的调整和优化。

分享到:
*特别声明:以上内容来自于网络收集,著作权属原作者所有,如有侵权,请联系我们: hlamps#outlook.com (#换成@)。
相关文章
{{ v.title }}
{{ v.description||(cleanHtml(v.content)).substr(0,100)+'···' }}
你可能感兴趣
推荐阅读 更多>