验证码: 看不清楚,换一张 查询 注册会员,免验证
  • {{ basic.site_slogan }}
  • 打开微信扫一扫,
    您还可以在这里找到我们哟

    关注我们

如何在CNTK中使用Batch Normalization和Dropout技术

阅读:996 来源:乙速云 作者:代码code

如何在CNTK中使用Batch Normalization和Dropout技术

在CNTK中使用Batch Normalization和Dropout技术,可以通过使用内置的BatchNormalization和Dropout函数来实现。以下是一个使用Batch Normalization和Dropout技术的示例代码:

import cntk as C

# 定义神经网络结构
input_dim = 784
output_dim = 10

x = C.input_variable((input_dim,))
y = C.input_variable((output_dim,))

hidden_layer = C.layers.Dense(128, activation=C.relu)(x)
bn_layer = C.layers.BatchNormalization()(hidden_layer)
dropout_layer = C.layers.Dropout(0.5)(bn_layer)

output_layer = C.layers.Dense(output_dim, activation=None)(dropout_layer)

# 定义损失函数和优化器
loss = C.cross_entropy_with_softmax(output_layer, y)
metric = C.classification_error(output_layer, y)

lr_schedule = C.learning_rate_schedule(0.01, C.UnitType.minibatch)
learner = C.sgd(output_layer.parameters, lr_schedule)
trainer = C.Trainer(output_layer, (loss, metric), [learner])

# 训练模型
for i in range(num_epochs):
    for j in range(num_minibatches):
        x_batch, y_batch = get_next_minibatch()
        trainer.train_minibatch({x: x_batch, y: y_batch})

# 评估模型
test_error = 1 - trainer.test_minibatch({x: test_features, y: test_labels})
print('Test error: {:.2f}%'.format(test_error * 100))

在上面的示例中,我们首先定义了一个包含Batch Normalization和Dropout层的神经网络结构。然后定义了损失函数、优化器和训练器。在训练模型时,我们需要按批处理传入训练数据,并通过trainer.train_minibatch方法来更新模型参数。最后,我们使用测试数据评估模型性能。

希望这个示例能帮助你在CNTK中使用Batch Normalization和Dropout技术。

分享到:
*特别声明:以上内容来自于网络收集,著作权属原作者所有,如有侵权,请联系我们: hlamps#outlook.com (#换成@)。
相关文章
{{ v.title }}
{{ v.description||(cleanHtml(v.content)).substr(0,100)+'···' }}
你可能感兴趣
推荐阅读 更多>